If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(a^2)-2a-12=0
a = 1; b = -2; c = -12;
Δ = b2-4ac
Δ = -22-4·1·(-12)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{13}}{2*1}=\frac{2-2\sqrt{13}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{13}}{2*1}=\frac{2+2\sqrt{13}}{2} $
| 26.88=5g+3.78 | | 5(2m+6)+7=3(4m+10)+7-3m | | -k-4k+20k+-7k=16 | | 2x-4x+x=34-4 | | 5/3(6x+3=2x-7 | | 3x+8/8=x+2/5 | | x+37=120 | | 3d2-14d-24=0 | | y-74=86 | | 1-3r+8=16+4r | | -3(5-6v)=-141 | | 1.25(4x–10)=7.5 | | -1|x+2|=7 | | 13=2t+5 | | 14x+21-6x=-23-3x | | 7,004x-4,352=68(103x-64) | | 3(v-8)=-18+3v | | 12p+4p-12p=4 | | 15-n=5(3-6n) | | (t+1)^2+(1-8)^2=45 | | .14+i=17 | | a/9=1/3 | | -1+|x+2|=7 | | 6x=30+3x–12 | | 17v-7v=10 | | 7x-4x+5=5x-7 | | -20=-4-6h | | 7v-9+3(2v+1)=-5(v+3) | | 11-8v=43 | | 3+2x=5(-3+2x)+2 | | 6t-5t=105 | | 2p(p-2)=-8p |